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ABSTRACT

Human music listeners are capable of identifying mul-
tiple ‘voices’ in musical content. This capability of
grouping notes of polyphonic musical content into en-
tities is of great importance for numerous processes of
the Music Information Research domain, most notably
for the better understanding of the underlying musical
content’s score. Accordingly, we present the VISA3

algorithm, a refinement of the family of VISA algo-
rithms for integration/segrega-tion of voice/streams
focusing on musical streams. VISA3 builds upon its
previous editions by introduction of new characteris-
tics that adhere to previously unused general percep-
tual principles, address assignment errors that accu-
mulate affecting the precision and tackle more generic
musical content. Moreover, a new small dataset with
human-expert ground-truth quantised symbolic data
annotation is utilised. Experimental results indicate
the significant performance amelioration the proposed
algorithm achieves in relation to its predecessors. The
increase in precision is evident for both the dataset of
the previous editions as well as for a new dataset that
includes musical content with characteristics such that
of non-parallel motion that are common and have not
yet been examined.

1. INTRODUCTION

It is a common understanding of music listeners that
musical content can be separated to multiple ‘voices’.
Nevertheless, it is widely accepted [1–3] that the no-
tion of a ‘voice’ is far from well-defined as it features
in a plethora of alternative meanings, especially when
polyphonic and homophonic elements are included.

In most occasions, the term ‘voice’ refers to a monopho-
nic sequence of successive non-overlapping musical tones,
as a single voice is assumed not to contain multi-tone
sonorities. In some cases though, provided that ‘voice’
is examined in the light of auditory streaming, it is
possible that the standard meaning is insufficient. In
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these cases, a single monophonic sequence may be per-
ceived as more than one voices/streams (e.g., pseu-
dopolyphony or implied polyphony) while a sequence
containing concurrent notes may be perceived as a sin-
gle perceptual entity (e.g., homophonic passages) [4].

Musical auditory stream integration/segregation de-
fines how successions of musical events are perceived
to be coherent sequences and, at the same time, seg-
regated from other independent musical sequences. A
number of general perceptual principles govern the
way musical events are grouped together in musical
streams [1, 2].

Given the ambiguity of ‘voice’ segregation defini-
tion, the process can be separated into two differ-
ent broad categories based mostly on whether the re-
sulting voices are monophonic or not. The scenario
wherein the resulting voices of the segregation are
monophonic is titled as ‘voice segregation’. On the
other hand, when the resulting segments are organ-
ised in perceptually coherent groups that may include
overlapping notes, then the process is referred to as
‘stream segregation’. Accordingly, this work’s focal
point lies on stream segregation based on quantised
symbolic data.

Musical content’s voice/stream segregation is of great
importance to Music Information Research (MIR) as
it allows for efficient and higher quality analytic re-
sults, such as the identification of multiple voices and/or
musical streams for the purpose of processing within
the voices (rather than across voices) [2]. All in all,
voice and stream segregation approaches aim at group-
ing notes of polyphonic musical content into entities
that allow for better understanding of the underlying
musical content’s score [5], and for this are essential
to MIR.

1.1 Motivation and Contribution

Existing methodologies of stream segregation, as ex-
tensively described in Section 2, do not utilise as many
as possible of the general perceptual principles [2] that
govern the way musical events are grouped together
in musical streams. Moreover, previous implementa-
tions usually present low precision due to erroneous
early stream assignment propagation until the end of
the piece. In addition, most works of voice/stream
segregation focus solely on a genre/type of musical
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content, thus providing genre-customised experimen-
tation. One further setback of this genre-customised
experimentation is the lack of breadth of available
ground-truth for further algorithms’ examination.

Accordingly, the contribution of this work is sum-
marised as follows:

• Incorporates the general perceptual principle of
Co-Modulation Principle that allows for amelio-
rated vertical integration.

• Proposes a methodology that segments musical
pieces into grouping entities that allow for revi-
sion and elimination of the initial error propa-
gation phenomenon.

• Extends the available stream segregation domain
data-sets with ground truth by providing new,
non-pop, human-expert produced annotation of
streams in musical pieces.

The rest of the paper is organised as follows: Section
2 describes background and related work and Section 3
provides a complete account of the proposed method.
Subsequently, Section 4 presents and discusses the ex-
perimentation and results obtained, while the paper is
concluded in Section 5.

2. RELATED WORK

Research on computational modelling of segregation
of polyphonic music into separate ‘voices’ has lately
received increased attention, though in most of these
cases, ‘voice’ is assumed to be a monophonic sequence
of successive non-overlapping musical tones.

The work of Temperley [6] proposes a set of prefer-
ence rules aiming at avoiding large leaps and rests in
streams, while minimising at the number of streams,
avoiding the common tones shared between voices and
minimising the fragmentation of the top voice. In [7],
Cambouropoulos makes the case for tones being max-
imally proximal within streams in temporal and pitch
terms, the minimisation of the number of voices and
the lack of streams’ crossing, i.e. the maximum num-
ber of streams to be equal to the number of notes in
the largest chord. Chew and Wu [8] propose an algo-
rithm based on the assumption that tones in the same
voice should be contiguous and proximal in pitch, while
voice-crossing should be avoided, i.e. the maximum
number of voices to be equal to the number of notes
in the largest chord. Szeto and Wong [9] present
stream segregation employing a clustering modelling
technique. The key assumption therein is that a stream
is to be considered as a cluster since it is a group
of events sharing similar pitch and time attributes
(i.e. proximal in the temporal and pitch dimensions).
Their algorithm determines automatically the number
of streams/clusters. As aforementioned, all of these
voice separation algorithms assume that a ‘voice’ is a
monophonic succession of tones, thus focusing on the
voice separation scenario.

The work by Kilian and Hoos [10] differs from the
voice separation scenario as it allows for entire chords
to be assigned to a single voice. Accordingly, more
than one synchronous notes can potentially be as-
signed to one stream. Their solution segments the
piece into slices with each slice containing at least
two non-overlapping notes. Penalty values are used
in an aggregating cost function for features that pro-
mote segregation such as large pitch intervals, rests
/ gaps, note overlap between successive notes, large
pitch intervals and onset asynchrony within chords.
The notes of each slice are separated into streams by
minimisation of the cost function. The penalty values
are user-adjustable in order lead to a different separa-
tion scenarios of voices by testing alternative segrega-
tion options. The maximum number of voices is again
user-defined or automatically selected based on the
number of notes in the largest chord. The pioneering
aspect of the proposal of Kilian and Hoos lies on the
fact that multi-note sonorities within single voices are
allowed. Accordingly, their algorithm has a different
scope/target, i.e. to split notes in different staves on
a score. It takes perceptual principles in account but
the result is not necessarily perceptually meaningful.

As far as the evaluation of voice/stream separation
algorithms is concerned, in most of the aforementioned
works, it has been performed solely on classical musi-
cal pieces. Guiomard-Kagan et. al [5] expanded their
corpus to evaluate most existing voice and stream sep-
aration algorithms by adding 97 popular music pieces
containing actual polyphonic information. However,
the annotation used therein was based on ground truth
created with monophonic voices and not streams, and
thus is not applicable to our proposal.

2.1 The VISA Algorithm

The previous editions of the Voice Integration/Segregation
Algorithm VISA algorithm proposed originally by Kary-
dis et al. [11] and extended by Rafailidis et al. [3] are
all based on the perceptual principles for stream sepa-
ration as proposed by Bregman [12]. Basic perceptual
principles, such as grouping rules based on similar-
ity and proximity (i.e. proximal or similar entities
in terms of time, space, pitch, dynamics, timbre are
to be interrelated in perceptually-valid groups), have
been employed in the last decades for modeling music
cognition processes [13]. Huron [14] maintains that
the main purpose of voice-leading in common practice
harmony is to create perceptually independent musical
lines/voices and presents a set of 10 perceptual prin-
ciples that explain a large number of well-established
voice-leading rules. The edition of the VISA algo-
rithm proposed herein, draws on the perceptual prin-
ciples presented by Huron with alterations as proposed
by Cambouropoulos in [2]. The principles that are
used in the previous implementations of the VISA al-
gorithm are:

1. Synchronous Note Principle: Notes with syn-
chronous onsets and same IOIs (durations) tend



to be merged into a single sonority [11].
2. Principle of Temporal Continuity: Continuous

or recurring rather than brief or intermittent
sound sources’ evoke strong auditory streams
[14].

3. Pitch Proximity Principle: The coherence of an
auditory stream is maintained by close pitch prox-
imity in successive tones within the stream [14].

In order to make the distinction more clear, the orig-
inal edition of the VISA algorithm as proposed by
Karydis et al. in [11] is henceforth referred to as
VISA07 while the edition prposed by Rafailidis et al.
in [3] is denoted as VISA09.

2.1.1 Previous Editions of VISA

All editions of the VISA algorithm receive as input the
musical piece in the form of a list L of notes that are
sorted according to their onset times, a window size
w, and a threshold T . The output is the number V
of detected musical streams. Notice that none of the
VISAs demand an a-priori knowledge of the number
of voices.

In detail, VISA07 and VISA09 moved in a step-wise
fashion through the input sequence of musical events.
The set of notes having onsets equal to the position of
a “sweep line” was denoted as Sweep Line Set (SLS).
Then, every SLS was divided into clusters by parti-
tioning the notes into a set of clusters C. The clus-
tering procedure was achieved according to the Syn-
chronous Note Principle. For a set of concurrent notes
at a given SLS, it had to be determined how to merge
these on the set of clusters C. Since it is possible that
synchronous notes may belong to different streams,
VISAs examined the musical context w around these.
If inside the context window, most co-sounding notes
had the same onsets and offsets, implying thus a ho-
mophonic texture, then these were merged. Other-
wise, this being most possibly a polyphonic texture,
the notes were not merged in single sonorities. In addi-
tion, as notes with different offsets produce different
clusters, each SLS was split into a number of note
clusters.

In VISA07, the cluster separation was following only
the Synchronous Note Principle while in VISA09 the
Break Cluster module was introduced as an extra method
for vertical integration. In this case, for every SLS,
if the texture is homophonic and all notes have the
same duration, this procedure looked ahead in the
next three SLSs; if there existed more clusters in one
of the following SLSs, VISA09 moved backwards and
broke one by one its preceding clusters, according to
the Pitch Proximity Principle until the current SLS
cluster was examined.

Given the set of clusters C for every SLS, the hor-
izontal streaming principle (i.e. the combination of
Temporal Continuity and Pitch Proximity principles)
was used to break these down into separate streams.
For each SLS in the piece, a bipartite graph was
formed in order to assign these to streams where one

Figure 1. Excerpt from the couplet of the Greek folk
song Kaith Xwmata - Ki an se agapw den se orizw.

set of vertices corresponded to the currently detected
streams (V ) and the other set corresponded to the
clusters in C. The corresponding edges represented
the cost for each assignment. The cost function calcu-
lated the cost of assigning each cluster to each voice
according to the Temporal Continuity Principle and
the Pitch Proximity Principle.

Moreover, VISA09 included a procedure that forced
the algorithm to switch onto two streams when the
texture is homophonic. This was done in order not
keep ‘alive’ extra streams (e.g. a third or fourth stream)
given that the tendency was to have one or two con-
stant streams (melody and harmonic accompaniment).

Then, using a dynamic programming technique, the
best matching (lowest cost) was found between previ-
ous streams and current clusters. Finally, two addi-
tional constraints were taken into account: the former
enforced stream crossing not to be allowed while the
latter ensured that the top stream should be mini-
mally fragmented [6].

2.1.2 Problems of VISA

VISA09 was tested on several musical examples that
were carefully selected so as to contain a constant
and small number of (up to three) streams. Most of
these are homophonic pieces and the algorithm per-
formed well in terms of precision since procedures were
implemented to support better homophonic stream
assignment. However, further examination showed
that the algorithm’s precision was diminished when
tested on different music styles that contained non-
homorhythmic homophonic accompanimental textures
with more than 2 streams. The same phenomenon can
be seen in pieces of the dataset in [3] with such homo-
phonic texture but containing more than two streams,
wherein the algorithm failed to produce a proper sepa-
ration. Moreover, VISA09 was not designed to detect
potential non parallel movement between notes with
same onsets and offsets. Figure 1 shows an example
of a non-classical piece containing non-parallel move-
ment between notes wherein VISA09 tends to create
single cluster sonorities due the homophonic texture
leading to wrong stream assignment.

In addition, the horizontal stream assignment mov-
ing by SLS from the beginning of a piece until the
end can be problematic in certain cases, as the cost
calculation in every SLS for assigning the streams on
the current clusters is based on principles and costs of
previous assignments. Therefore, if the algorithm de-
tects in previous SLSs a wrong number of streams or



clusters, it will possibly continue to accumulate wrong
calculations for all the remaining SLSs even though
that the piece could be very simple as far as stream
assignment is concerned. This scenario was observed
mainly in pieces that contain three or more streams.

Finally, the choices of the Break Cluster approach
and the homophonic detection, which force the algo-
rithm to switch back to the two basic streams, seem
very specialised for certain (genres of) musical pieces,
especially given that research for voice/stream sepa-
ration has thus far mainly focused on classical music
pieces.

3. THE PROPOSED METHOD

The proposed revision of VISA, the VISA3 edition dif-
fers from the previous two, not only in functionality,
but by additionally performing a step further after
vertical integration as well as having been tested on
popular music too, in addition to the common dataset
of the previous two versions of VISA. We propose the
use of the Co-Modulation Principle for further verti-
cal integration and a customised Contig Segmentation
approach, based on the work of Chew and Wu [8] using
clusters. Figure 2 presents the steps of our revision
which are:

1. Vertical Integration: Merging Notes into Single
Sono-rities using the Synchronous Note Princi-
ple and then examining special cases for fur-
ther integration with the Break Cluster tech-
nique and the Co-Modulation Principle.

2. Contig Segmentation: Segmentation of the piece
into contigs from the previous step.

3. Horizontal Integration: Stream matching within
contigs using horizontal streaming principles and
other factors such as homogeneity.

4. Contig Connection: Integration of contigs by
connecting their streams on the segmentation
boundaries.

3.1 Merging Notes into Single Sonorities

VISA3 accepts as input the musical piece (i.e. a quan-
tised MIDI file) in the form of a list L of notes that
are sorted according to their onset times, a window
size w and the homophony threshold T , exactly the
same parameters as the previous editions of the VISA
algorithm. After merging the notes into clusters ac-
cording to the Synchronous Note Principle, further
vertical integration takes place with the new revised
Break Cluster module and the Pitch Co-modulation
Principle.

3.1.1 Break Cluster Module

The Break Cluster module is activated when the lo-
cal context is mostly homophonic and a number of
notes are integrated vertically, producing thus a clus-
ter in the current SLS. The following two significant

Figure 2. The VISA3 algorithm.

changes occur in relation to the previous versions of
the VISA algorithm:

1. Instead of looking ahead in the next three SLSs,
the revised procedure of VISA3 looks for the fol-
lowing SLSs that appear within a window size
w,

2. In VISA09 the look-ahead procedure works only
for single large clusters with the same number
of streams, then ceases to function if it iden-
tifies more on the subsequent SLSs and starts
breaking these according to pitch proximity. In
VISA3, the procedure doesn’t stop in cases where
the next SLS has less streams than the initial
cluster, but it skips it and continues with the
following until it finds the breaking point. In
this way, the clusters that are not necessarily
consecutive are being examined.

Figure 3 shows an example where the notes are in
single clusters and the context is homophonic. All
notes in SLS1 are clustered vertically into a single
cluster. Therefore the Break Cluster procedure is ac-
tivated and looks the next SLSs in a window size w.
It skips SLS2 and SLS4 as it detects fewer streams
than SLS1 and stops on SLS5 as it finds three clus-
ters: {N9}, {N10} & {N11}. Moving backwards, the
process breaks SLS3 and SLS1 to {N5}, {N6}, {N7}
& {N1}, {N2}, {N3}, respectively, based on the Pitch
Proximity Principle. It is worth noting that if the
process finds clusters with more voices than SLS1, all
combinations will be checked.

3.1.2 Pitch Co-modulation Principle

VISA3 features a functionality aiming at detecting
non-parallel movement between voices of consecutive



Figure 3. Breaking vertical clusters. Vertical clus-
ters in SLS1 and SLS3 are broken retrospectively as
the last SLS5 comprises of three clusters; thus, this
extract is separated into three streams.

vertically integrated clusters which the Synchronous
Note Principle cannot separate. This principle is based
on Huron’s Pitch Co-modulation Principle [14]: “The
perceptual union of concurrent tones is encouraged
when pitch motions are positively correlated”.

The procedure works as follows: In every SLS in
which clusters with two or more notes are detected, it
looks ahead up to a window of size w and attempts to
create monophonic chains within consecutive clusters
of the same number of notes. It examines whether
two chains follow the same overall direction (i.e. if
the notes move in parallel or not) by calculating the
deviation in the pitch differences between the corre-
sponding chain notes. Accordingly, there are two cases
to be examined: two note chains in two-note cluster
sequences and constant three or more note chains in
three of more note clusters.

As far as the first case is concerned, the distinguish-
ing task is rather clear: if the concurrent notes within
a chain move in non-parallel direction, these are sep-
arated and the procedure moves backwards breaking,
in every SLS, the corresponding cluster into two sepa-
rate clusters following the technique found in [15]. For
the latter case, i.e., for larger clusters, each such clus-
ter is separated into a set number of note chains. If the
direction of notes between two chains is the same (i.e.
parallel movement) then the notes of the two chains
remain in the same stream. Else, if the direction of
notes is different, then these form different streams.
On the other hand, if there is no correlation between
the movement of each stream within the chain then
the cluster is separated.

The proposed methodology is based on the following
two assumptions: First, the number of notes of the
consecutive large clusters has to be constant. Other-
wise, a cluster chain is terminated when clusters with
more or less notes are found. Secondly, the direction of
notes refers to the contrapuntal motion between two
melodic lines [16]. While in cluster chains with two
notes we seek for parallel motion, in this case we seek
for similar motion, where the notion of similar motion
refers to motion in the same direction. Thus, both
chains move up or down but the interval between these

is different in every SLS. Figure 4(a) presents exam-
ples of both cases where the notes inside the chains
move in non-parallel direction and thus require sepa-
ration. In Figure 4(b), the upper two streams move in
parallel and thus do not require separation, in contrast
to the third (lower) stream.

(a) Cluster chains with two voices

(b) Cluster chains with three or more voices

Figure 4. Examples of non-parallel movement on con-
secutive vertically integrated clusters.

3.2 Contig Clustering Process

The Contig Clustering process is based on the work
of Chew and Wu [8] that proposed a “contig map” for
voice separation. A contig is a collection of sequences
of successive notes that belong to the same voice and
the overlap depth (number of note sequences) at any
time is constant. In the context of VISA3, the contig
clustering process segments a piece into contigs ac-
cording to stream count and then reconnects the frag-
ments in adjacent contigs using a distance strategy.

Thus, we propose the use of the contig mapping ap-
proach according to the cluster count as an additional
step between the vertical and horizontal integration
processes. Formally, if Ct represents the cluster count
at SLSt, the boundary between time slices t − 1 and
t becomes a segmentation boundary if:

1. Ct ̸= Ct−1, or

2. Ct = Ct−1, in which case the cluster status changes.

The status change is caused by overlapping clusters
that cross over an SLS that has been marked as a
segmentation boundary. In this case, the overlapping
clusters are separated at SLSt into two clusters with
the same pitch and overall duration as the initial. Fig-
ure 5 shows an example of contig segmentation. Until
SLS4 the cluster count is 2 within ContigA. At SLS5



Figure 5. Contig Segmentation within a piece after
vertical integration.

the cluster count has not changed but an overlap clus-
ter from previous SLS does exist. The cluster with
notes {N6, N7} will be thus separated into two clus-
ters. Thus, {N6a, N7a} will have onset as in SLS3 and
offset as in SLS5, while {N6b, N7b} will have onset
as in SLS5 and offset as in SLS7, respectively.

3.3 Stream Matching

As mentioned in Section 2.1.1, after determining the
clusters for each SLS, a bipartite graph is created
for matching notes to streams. Each cell (i, j) of the
graph designates the cost between the last cluster as-
signed to stream i and the current cluster j. The
previous versions of the VISA algorithm moved in a
step-wise fashion through the input sequence, creat-
ing the graph and then assigning the streams. The
following factors were used for the calculation of the
cost:

1. Homogeneity factor 25%: Refers to the differ-
ence of the number of notes between clusters.
Consecutive clusters with the same number of
notes are more likely to belong to the same stream.

2. Pitch Proximity 50%: Distinguishes the clusters
that have close average pitch with the available
streams.

3. Temporal Continuity 25%: Music rests (gaps)
between consecutive clusters impose additional
cost for the assignment.

In VISA3, we propose the same factors but with
slightly different methodology:

1. Assign streams in every contig: The number of
clusters Ct in a contig represents the number of
streams Vt.

2. Integrate the contigs by calculating the assign-
ment costs on all segmentation boundaries: If
at SLSt holds that Ct ̸= Ct−1, then this is the
end of contig Cgt−1 and the beginning of Cgt.
In order to connect the streams we calculate the
cost using the same factors, as mentioned be-
fore, between the last clusters assigned to stream
i ∈ Vt−1 of Cgt−1 and current clusters of Cgt.

Figure 6. Stream Matching between consecutive con-
tigs.

Figure 6 presents a scenario of stream assignment be-
tween contigs based on the previous example. ContigA
has cluster count 2, and therefore 2 streams, S1a and
S1b, were assigned to all its clusters. Similarly, ContigB
has 3 streams. The connection between the streams
S1x and S2x is based on a stream assignment of the
first clusters of ContigB with the streams of the last
assigned clusters of ContigA. For example, the clus-
ter consisting of the note N9 is more likely to connect
with a stream in which the last cluster assigned is
N8. Therefore, a link exists between S1A and S1B .
Finally, it is worth mentioning that the homophonic
procedure that forces the algorithm to switch to the
two basic streams, as described in previous versions of
the VISA algorithm, is completely removed in VISA3

as it is not required due to the use of the Contig Clus-
tering process.

4. PERFORMANCE EVALUATION

This section presents a concise description of the ex-
perimentation platform and data sets, followed by a
performance analysis based on experimentation on the
proposed method. The implementation is under MAT-
LAB with the use of MIDIToolbox [17] for auxiliary
functions.

4.1 Experimental Set-up

The proposed algorithm has been tested with two dif-
ferent datasets of quantised symbolic data. The first
dataset consists mostly of the same data with the
VISA09 version, for the purposes of comparing/contrasting
the performance of VISA09 and VISA3. It includes
30 pieces, featuring 16 excerpts primarily from pi-
ano sonatas by Beethoven, seven fugues and inven-
tions by J.S.Bach, three mazurkas and two waltzes
by F.Chopin. The selection of these pieces was in-
tended to capture diverse musical textures, i.e. ho-
mophonic and contrapuntal textures. The majority
of these pieces contain homophonic texture with two
streams, consisting of a melody (upper staff) and ac-
companying harmony (lower staff). J.S. Bach’s pieces
feature independent monophonic streams, while very
few pieces from Beethoven include parallel movement
cases.



In order to further expand the testing corpus, we
created a second small dataset with a selection of tra-
ditional Greek folk popular music. 30 MIDI files from
the Greek Music Dataset, a freely available collec-
tion of features and metadata for 1400 popular Greek
tracks [18], were selected randomly to expand the ex-
perimental examination corpus. After pre-processing,
which included the deletion of duplicate instrument
tracks and drum tracks, only pieces with different poly-
phonic and monophonic independent streams were kept.
Then, an annotation task was conducted by a music
theory research student that was aimed to identify
streams in the scores after listening each excerpt. A
number of musical examples which contained parallel
movement cases, homophonic and polyphonic textures
were discussed with the expert before doing this task.
Therefore, bearing in mind all the above restrictions,
the total number of the annotated tracks was reduced
to 14.

The evaluation metric used herein is the precision
of the obtained result. Herein, precision refers to the
sum of notes that have been correctly assigned to the
appropriate stream (according to the ground-truth),
divided by the total number of notes.

4.2 Results

Table 1 shows the complete results of the proposed
methodology for both datasets. The average preci-
sion of VISA09 in the classical dataset is 82,1% while
with the proposed refinement, VISA3 reaches 88,9%.
An even more notable amelioration in precision is de-
tected in the popular dataset where VISA09’s preci-
sion is 62,8% while VISA3 achieves 80,5%. Accord-
ingly, the proposed modifications into the VISA fam-
ily offer significant improvement as far as the perfor-
mance of the algorithm is concerned.

More specifically, VISA3 improves the precision on
pieces where non-parallel movement is detected ac-
cording to the Co-Modulation Principle, in both datasets.
Accordingly, we present two examples by providing
the score and the corresponding pianorolls as well as
with the ground truth, for both VISA09 and VISA3

assignment. Each color on the pianoroll corresponds
to different stream. Figure 7 presents one such exam-
ple wherein VISA09 detects two streams on the first
bar, considering only the Synchronous Note Principle.
On the other hand, VISA3 detects three streams, since
the top and bottom notes move in non-parallel fash-
ion. In the second bar, both versions find 3 streams
due to different note durations in every SLS while in
the third bar, similarly to the case of the first bar,
VISA09 detects only two of the three streams by con-
sidering solely the Synchronous Note Principle.

Another representative example with non-parallel move-
ment is shown in Figure 8 where the texture can be
characterised as homophonic. VISA09, when detect-
ing homophonic texture, forces the use of one stream,
i.e. all synchronized notes are assigned to one chordal
stream (or two streams, i.e. main melody notes and

Figure 7. Opening of Beethoven’s, Sonata 13, Adagio
Cantabile.

Figure 8. Opening of the Greek folk song Alikh Vou-
giouklakh - Gaidarakos.



VISA09 VISA3

Classical Dataset
Beethoven, Sonata 2-1 Prestissimo 93.0% 93.6%
Beethoven, Sonata 2-1 Adagio 83.0% 86.8%
Beethoven, Sonata 2-2 AllegroVivace 79.8% 85.1%
Beethoven, Sonata 2-2 LargoApp 91.0% 95.3%
Beethoven, Sonata 2-2 Rondo 82.0% 83.9%
Beethoven, Sonata 2-2 Scherzo 75.0% 95.3%
Beethoven, Sonata 2-3 Adagio 77.0% 89.1%
Beethoven, Sonata 2-3 AllegroAssai 94.0% 98.6%
Beethoven, Sonata 2-3 AllegroConBrio 87.0% 87.3%
Beethoven, Sonata 2-3 Scherzo 73.0% 75.9%
Beethoven, Sonata 10-2 Allegretto 73.0% 90.1%
Beethoven, Sonata 10-2 Allegro 89.0% 97.2%
Beethoven, Sonata 10-2 FinalePresto 92.0% 100%
Beethoven, Sonata 13 AdagioCantabile 47.7% 78.0%
Beethoven, Sonata 13 Grave 97.9% 93.4%
Beethoven, Sonata 13 Rondo 85.0% 87.7%
Brahms, Waltz Op39 No8 89.0% 96.5%
Bach, Fugue BWV 852 91.0% 89.7%
Bach, Fugue BWV 856 94.0% 85.4%
Bach, Fugue BWV 772 96.7% 97.4%
Bach, Fugue BWV 784 93.4% 95.0%
Bach, Fugue BWV 846 49.6% 77.4%
Bach, Fugue BWV 859 32.8% 78.2%
Bach, Fugue BWV 281 39.2% 56.5%
Joplin, Harmony Club Waltz 92.3% 89.5%
Chopin, Waltz Op64 No1 91.2% 91.0%
Chopin, Waltz Op69 No2 96.2% 92.1%
Chopin, Mazurka Op7 No1 92.4% 90.8%
Chopin, Mazurka Op7 No5 96.6% 100%
Chopin, Mazurka Op67 No4 89.6% 91.3%

Popular Dataset (ID Tags)
Marinella - Agaph pou egines dikopo maxairi ID 267 58.1% 74.4%
Marinella - Stalia, Stalia ID 10 38.1% 87.1%
Grhgorhs Bithikwtshs - Asprh Mera kai gia emas ID 385 85.6% 95.3%
Markos Vamvakarhs - Mikros Aravwniastika ID 1004 73.7% 95.1%
Mikis Theodwrakhs - Tis dikaiosynhs hlie nohte ID 1053 70.6% 81.0%
Maria Dhmhtriadh - To treno feugei stis 8 ID 1057 77.7% 88.7%
Kaith Xwmata - Ki an se agapw den se orizw ID 1240 77.6% 87.8%
Dhmhtra Galanh - Vre pws allazoun oi kairoi ID 1295 24.2% 59.9%
Vasilhs Tsitsanhs - Gia ta matia pou agapw ID 1256 65.9% 65.0%
Vasilhs Tsitsanhs - Mpakse tsifliki ID 1274 60.6% 74.7%
Vasilhs Tsitsanhs - Trekse magka na rwthseis ID 1290 32.7% 77.6%
Alikh Vougiouklakh - Gaidarakos ID 1320 71.3% 77.1%
Grhgorhs Bithikwtshs - Eimai aetos xwris ftera ID 1322 80.9% 87.2%
Mairh Lw - Epta tragoudia tha sou pw ID 1325 62.5% 75.5%

Table 1. Precision for stream separation by the pre-
vious and the current implementation of VISA on the
Classical and Popular Dataset.

accompaniment if melody contains some different note
durations). VISA09 does not check for parallel move-
ment in homophonic clusters and, therefore, does not
have the ability to identify streams due to different
motion within homophony. In this instance, it fails to
recognize the three streams indicated in the ground
truth, and therefore the precision is very low. In con-
trast, VISA3 achieves far better results by detecting
correctly the non-parallel movement between consec-
utive clusters and separates these to different streams.
Furthermore, considering the contig segmentation of
the piece, the algorithm is not carrying further initial
wrong stream assignments. As shown on the assign-
ment results for VISA3 in Figure 8, VISA3 fails to sep-
arate the single clusters containing two or three notes,
though as the cluster count changes, a new contig be-
gins and the stream assignment continues smoothly
without taking into account previous errors.

5. CONCLUSIONS

This work presents the VISA3 algorithm, a refine-
ment of the family of VISA algorithms for integra-
tion/segregation of voice/streams. VISA3 builds upon
its previous editions by discarding unnecessary tech-
niques and introducing new that adhere to general
perceptual principles, address accumulation errors and
tackle more generic musical content. Moreover, a new
small dataset of quantised symbolic data with human-
expert ground-truth annotation is utilised.

Experimental results indicated that the proposed al-
gorithm achieves significantly better performance than
its predecessors. The increase in precision is evident
for both the dataset of the previous editions as well as
for a new dataset that includes musical content with
characteristics such that of non-parallel motion that
are common and thus required to be addressed.

Future plans include the examination of alternative
methods to avoid early stream assignment error prop-
agation, less strict evaluation measurements such as
customisations of the Note-based [8] and Transition-
based [19] evaluation metrics used in voice separation
tasks as well as and the expansion of the ground-truth
dataset with more diverse musical content.
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